Thermodynamic Properties of Organic Oxygen Compounds. Part 677. $XV.^1$ Purification and Vapour Pressures of Some Ketones and Ethers

By R. R. Collerson, J. F. Counsell, R. HANDLEY, J. F. MARTIN, and C. H. S. SPRAKE

Samples of four ketones (methyl ethyl, diethyl, methyl propyl, and ethyl propyl) and three ethers (methyl phenyl, ethyl phenyl, and diphenyl) of purity greater than 99.9 moles %, as established by cryoscopy, have been prepared. Their freezing points and the vapour pressures in the range 150-1000 mm. have been measured. Antoine and Kirchhoff equations have been fitted to the experimental vapour pressures. Normal boiling points and heats of vaporisation have been calculated.

THE vapour pressures of the four ketones and three ethers with which this Paper is concerned have been measured previously (methyl ethyl ketone,²⁻⁷ diethyl ketone,^{4-6,8} methyl

- M. G. Mayberry and J. G. Aston, J. Amer. Chem. Soc., 1934, 56, 2682.
 D. R. Stull, Ind. Eng. Chem., 1947, 39, 517.
 R. R. Dreisbach and S. A. Shrader, Ind. Eng. Chem., 1949, 41, 2879.
 K. A. Kobe, H. R. Crawford, and R. W. Stephenson, Ind. Eng. Chem., 1955, 47, 1767.
 K. M. Kobe, M. R. Crawford, and R. W. Stephenson, Ind. Eng. Chem., 1955, 47, 1767.
- J. K. Nickerson, K. A. Kobe, and J. J. McKetta, J. Phys. Chem., 1961, 65, 1037.
 L. Maess and L. v. Müffling, Angew. Chem., 1937, 50, 759.

¹ Part XIV, R. Handley, D. Harrop, J. F. Martin, and C. H. S. Sprake, *J.*, 1964, 4404. ² W. A. Felsing, L. Shofner, and N. B. Garlock, *J. Amer. Chem. Soc.*, 1934, **56**, 2252.

propyl ketone,^{3,4,6,7} ethyl propyl ketone,⁹ methyl phenyl ether,^{4,5,10} ethyl phenyl ether,^{4,5} and diphenyl ether 4,5,11). Of the observations published, some cover only a limited temperature range and most appear to be of a lower precision than those obtained by comparative ebulliometry on samples of known high purity. The freezing points of the ketones have also been measured, and the results differ by $0.4-0.8^{\circ}$ from previously published values.4,12,13

Antoine equations, $\log_{10} P$ (mm.) = A - B/(C + t), and Kirchhoff equations, $\log_{10} P \text{ (mm.)} = a - b/T - c \log T$, have been fitted to the experimental vapour pressures (t is the temperature in °c, $T = t + 273 \cdot 15^\circ$, and A, B, C, a, b, and c are constants). The Antoine equation usually gives a close fit for accurate experimental data, and permits easy calculation of the temperature corresponding to any particular value of pressure. The Kirchhoff equation for vapour pressure has a sounder theoretical basis but possesses the disadvantage that temperatures cannot readily be calculated from pressures. The results of the measurements tabulated in this Paper have a standard deviation $(P_{obs.} - P_{calc.})$ of ± 0.02 mm. for the Antoine equations and ± 0.1 mm. for the Kirchhoff equations.

EXPERIMENTAL

Purification.—Commercial samples of the four ketones were distilled under reduced pressure (700 mm.) through columns of 100 theoretical plates with a reflux ratio of 100:1. A series of fractions was collected, and those of highest purity (gas chromatography) were combined. The boiling range and gas chromatograms of methyl ethyl ketone and ethyl propyl ketone indicated the absence of impurities. Further purification of diethyl ketone and methyl propyl ketone was necessary; fractional freezing was effective for the former but not for the latter, which was purified by azeotropic distillation at 700 mm. with water. The ketones were dried over calcium sulphate (methyl ethyl and methyl propyl) or calcium hydride (diethyl and ethyl propyl), and redistilled.

Pure samples of methyl phenyl ether and ethyl phenyl ether were prepared from commercial products by fractional distillation at 650 mm. through 100-plate columns. Fractions of constant boiling point which showed no impurities (gas chromatography) were combined, dried over calcium hydride, and redistilled under reduced pressure. Commercial diphenyl ether was distilled at atmospheric pressure from flask to receiver without the use of a column, and was further purified by fractional freezing. In the later stages of purification, all the compounds were kept under dry nitrogen.

Freezing Points, and the Quantitative Determination of Purity.-The purities of six of the compounds were determined by melting- or freezing-point procedures.^{14,15} Initial freezing points and the freezing-point depressions produced by addition of measured amounts of 2,3,3-trimethylpentane were found by means of a U-tube apparatus.¹⁴ These methods could not be used for methyl propyl ketone because of its erratic freezing behaviour; its purity was assessed by low-temperature calorimetry.¹⁶ The results of the measurements are given in Table 1.

Vapour Pressure-Temperature Relationships, Normal Boiling Points, Values of (dP/dt) at 760 mm., and Latent Heats of Vaporisation.-Vapour pressures from near 150 or 200 mm. to near 1000 mm. were measured in an ebulliometric apparatus.¹⁷ The apparatus and procedure were as described previously except that calculations were carried out on a digital computer, which calculated temperatures and corresponding vapour pressures from bridge readings of the platinum resistance thermometers, and also the following. Antoine equations and Kirchoff equations were fitted by the method of least squares to the observed values of t and P for each compound, and the values of pressure at the experimental temperatures were calculated from both equations for each compound. The experimental vapour pressures are given in Table 2, and

⁹ K. Owen, O. R. Quayle, and W. J. Gegg, J. Amer. Chem. Soc., 1942, 64, 1294.
¹⁰ F. Glaser and H. Rüland, Chem.-Ing. Tech., 1957, 29, 772.
¹¹ H. E. Bent and R. J. Francel, J. Amer. Chem. Soc., 1948, 70, 634.
¹² R. R. Dreisbach and R. A. Martin, Ind. Eng. Chem., 1949, 41, 2875.
¹³ G. S. Parks, W. D. Kennedy, R. R. Gates, J. R. Mosley, G. E. Moore, and M. L. Renquist, J. Amer. Chem. Soc., 1956, 78, 56.
¹⁴ F. F. C. Herington and R. Handley, L. 1950, 199

¹⁴ E. F. G. Herington and R. Handley, J., 1950, 199.
 ¹⁵ E. F. G. Herington, Analyt. Chim. Acta, 1957, 17, 15; R. Handley, *ibid.*, p. 115.
 ¹⁶ J. F. Counsell and J. F. Martin, unpublished results.
 ¹⁷ D. P. Biddiscombe and J. F. Martin, Trans. Faraday Soc., 1958, 54, 1316.

TABLE 1

Purities and freezing points

	Purity (moles %) and method	F. p. of	F. p. for
Compound	of assessment	sample	100% purity
Methyl ethyl ketone	99.95 ± 0.01 (f. p.)	$-86.73^{\circ}\pm0.01^{\circ}$	$-86.69^{\circ}\pm0.01^{\circ}$
Diethyl ketone	99.95 ± 0.01 (f. p.)	-39.00 ± 0.01	-38.97 ± 0.01
Methyl propyl ketone	99.93 ± 0.01 (calorimetric)	-76.88 ± 0.01	-76.86 ± 0.01
Ethyl propyl ketone		-55.67 ± 0.01	$-55\cdot65\pm0\cdot01$
Methyl phenyl ether			
Ethyl phenyl ether			
Diphenyl ether	99·997 \pm 0·001 (m. p.)		

TABLE 2

Vapour pressures (t in °c; P in mm. Hg at 0° and standard gravity)

t	P	t	P	t	P	t	P
			Methyl et	hyl ketone			
42.788	$199 \cdot 28$	64.005	449.69	74.839	$651 \cdot 42$	83.161	850.78
48 ·148	247.70	67.009	499.73	76.950	698.03	85.013	901.02
53.026	299.75	69.734	548.93	79.221	751.08	86.715	949.18
57.080	349.46	$72 \cdot 343$	599.55	81.268	801.72	88.444	1000.23
60.821	401.05						
			-	l ketone			
56.544	$153 \cdot 32$	$82 \cdot 114$	401.08	96.897	650.69	105.737	850.67
63.032	198.99	$85 \cdot 494$	449 ·88	99.177	$698 \cdot 25$	107.682	900.53
68.735	$247 \cdot 83$	88.612	499·03	$101 \cdot 566$	751.03	$109 \cdot 486$	948·79
73 ·908	300.09	91.605	550.15	$103 \cdot 724$	801.33	$111 \cdot 303$	999·49
78.158	349.45	94.314	599.94				
			Methyl pro	opyl ketone			
56.649	$153 \cdot 31$	$82 \cdot 326$	401.03	97.179	650.75	$106 \cdot 114$	$852 \cdot 16$
63.184	199.11	85.708	449.64	99.470	698.36	108.023	900.92
$68 \cdot 897$	247.82	88.893	499.63	$101 \cdot 845$	750.53	$109 \cdot 830$	949·09
74.077	299.96	$91 \cdot 834$	549.67	104.031	801·30	111.655	999·78
$78 \cdot 340$	$349 \cdot 29$	$94 \cdot 549$	599.34				
			Ethyl pro	pyl ketone			
$75 \cdot 613$	$153 \cdot 19$	$102 \cdot 558$	400.90	118.125	650.07	$127 \cdot 509$	851.28
$82 \cdot 486$	199.14	$106 \cdot 128$	449.80	120.532	697.61	$129 \cdot 522$	900.24
88.481	247.87	109.419	498.99	123.080	750.99	$131 \cdot 435$	948.81
93.872	299.58	112.558	$549 \cdot 82$	$125 \cdot 345$	801.07	133.365	999.80
98.385	$349 \cdot 27$	115.416	599.62				
			Methyl pł	nenyl ether			
$109 \cdot 876$	$199 \cdot 12$	135.078	449.66	147.890	650.54	$157 \cdot 810$	850.44
$116 \cdot 255$	247.70	138.640	499.65	150.429	697.72	160.009	900.72
122.045	299.77	141.919	$549 \cdot 54$	$153 \cdot 143$	751.08	162.087	950.32
$126 \cdot 854$	349.43	145.003	599.99	$155 \cdot 554$	801.21	164.114	1000.80
$131 \cdot 266$	400.72						
				enyl ether			
117.431	$153 \cdot 32$	146.908	400·94	163.972	650.77	$174 \cdot 190$	851.22
124.908	198.96	150.795	449.59	$166 \cdot 622$	698.70	$176 \cdot 407$	900.51
$131 \cdot 478$	247.70	$154 \cdot 432$	499.32	$169 \cdot 315$	750.31	$178 \cdot 511$	949.37
$137 \cdot 430$	299.86	157.829	549.63	$171 \cdot 821$	800.98	180.608	1000.09
$142 \cdot 338$	349.27	160.982	599.84				
			Diphen	yl ether			
$204 \cdot 213$	199.18	$235 \cdot 186$	449.40	250.991	650.61	$263 \cdot 290$	851.84
$212 \cdot 102$	248.07	$239 \cdot 618$	499.95	254.089	697.34	$265 \cdot 939$	901.01
219.226	300.19	243.667	550.00	$257 \cdot 458$	$751 \cdot 14$	$268 \cdot 416$	949.02
$225 \cdot 105$	349.61	$247 \cdot 413$	599.79	260.469	$801 \cdot 86$	270.949	1000.08
230.561	401.15						

the constants of the vapour-pressure equations in Table 3. The values of the normal boiling points, (dP/dt) at 760 mm., and latent heats of vaporisation calculated from the Antoine equations are given in Table 4. Latent heats of vaporisation, ΔH_v , at the normal boiling point were calculated from the equation, $\Delta H_v = T[(RT/P) + B - V_L]dP/dT$, where B is the second virial coefficient in the equation of state, PV = RT + BP, and V_L is the molar volume of the liquid. Values of B were calculated from measured ¹⁸ or estimated (T_c and P_c for ethyl phenyl

¹⁸ D. Ambrose, unpublished results.

TABLE 3

Constants of vapour-pressure equations

	Antoine equation			Kirchhoff equation		
	$\log P = A - B/(C+t)$			$\log P = a - b/T - c \log T$		
Compound	A	B	С	a	b	с
Methyl ethyl ketone	7·0 63 76	$1261 \cdot 455$	221.982	$19 \cdot 48332$	2328.00	3.92657
Diethyl ketone	7.02427	$1309 \cdot 653$	$214 \cdot 118$	22.02258	$2614 \cdot 85$	4.72805
Methyl propyl ketone	7.01753	$1311 \cdot 145$	214.693	21.71880	$2594 \cdot 12$	4.63307
Ethyl propyl ketone	7.00083	1365.798	208.007	$22 \cdot 90884$	$2812 \cdot 27$	4.97916
Methyl phenyl ether	7.05236	$1489 \cdot 756$	$203 \cdot 543$	$22 \cdot 84299$	3033.20	4.88720
Ethy phenyl ether	7.01980	$1507 \cdot 267$	$194 \cdot 357$	$24 \cdot 97404$	3295.20	5.53743
Diphenyl ether	7.01188	$1800 \cdot 415$	$177 \cdot 826$	24.66548	$3897 \cdot 50$	5.30117

TABLE 4

Normal boiling points, dP/dt at 760 mm., second virial coefficients, molar volumes of liquids, and molar heats of vaporisation

	B. p. at	(dP/dt) at 760 mm.	B	$V_{\mathbf{L}}$	$\Delta H_{\rm x}$ at 760 mm.
Compound	760 [°] mm.	(mm. Hg/°c)	(ml.)	(mĺ.)	(cal./mole)
Methyl ethyl ketone	79·589°	$24 \cdot 27$	-1085	100	7570
Diethyl ketone	101.959	22.94	-1250	122	8060
Methyl propyl ketone	$102 \cdot 260$	22.84	-1260	122	8040
Ethyl propyl ketone	$123 \cdot 496$	21.75	-1430	144	8520
Methyl phenyl ether	$153 \cdot 580$	20.44	-1300	129	9330
Ethyl phenyl ether	$169 \cdot 806$	19.89	-1530	151	9730
Diphenyl ether	257.997	16.59	-1995	195	11,620

ether and P_c for diphenyl ether)¹⁹ values of the critical temperatures and critical pressures by the use of Pitzer and Curl's equation.²⁰ The molar volumes, $V_{\rm L}$, at the boiling points were obtained from volume equivalents of the elements.²¹

Chemical Physics Division, National Chemical Laboratory, Teddington, Middlesex. [Received, January 8th, 1965.]

A. L. Lydersen, "Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions," University of Wisconsin, Engineering Experiment Station, report No. 3, 1955.
 ²⁰ K. S. Pitzer and R. F. Curl, J. Amer. Chem. Soc., 1957, 79, 2369.
 ²¹ S. Glasstone, "Textbook of Physical Chemistry," Macmillan, London, 1940, p. 515.