677. Thermodynamic Properties of Organic Oxygen Compounds. Part XV. ${ }^{1}$ Purification and Vapour Pressures of Some Ketones and Ethers

By R. R. Collerson, J. F. Counsell, R. Handley, J. F. Martin, and C. H. S. Sprake

Samples of four ketones (methyl ethyl, diethyl, methyl propyl, and ethyl propyl) and three ethers (methyl phenyl, ethyl phenyl, and diphenyl) of purity greater than 99.9 moles $\%$, as established by cryoscopy, have been prepared. Their freezing points and the vapour pressures in the range $150-$ 1000 mm . have been measured. Antoine and Kirchhoff equations have been fitted to the experimental vapour pressures. Normal boiling points and heats of vaporisation have been calculated.
The vapour pressures of the four ketones and three ethers with which this Paper is concerned have been measured previously (methyl ethyl ketone, ${ }^{2-7}$ diethyl ketone, ${ }^{4-6,8}$ methyl
${ }^{1}$ Part XIV, R. Handley, D. Harrop, J. F. Martin, and C. H. S. Sprake, J., 1964, 4404.
2 W. A. Felsing, L. Shofner, and N. B. Garlock, J. Amer. Chem. Soc., 1934, 56, 2252.
3 M. G. Mayberry and J. G. Aston, J. Amer. Chem. Soc., 1934, 56, 2682.
4 D. R. Stull, Ind. Eng. Chem., 1947, 39, 517.
5 R. R. Dreisbach and S. A. Shrader, Ind. Eng. Chem., 1949, 41, 2879.
${ }^{6}$ K. A. Kobe, H. R. Crawford, and R. W. Stephenson, Ind. Eng. Chem., 1955, 47, 1767.
7 J. K. Nickerson, K. A. Kobe, and J. J. McKetta, J. Phys. Chem., 1961, 65, 1037.
8 L. Maess and L. v. Müffling, Anger. Chem., 1937, 50, 759.
6 c
propyl ketone, ${ }^{\mathbf{3}, \mathbf{4 , 6} 7}$ ethyl propyl ketone, ${ }^{9}$ methyl phenyl ether, ${ }^{\mathbf{4}, 5,10}$ ethyl phenyl ether, ${ }^{4,5}$ and diphenyl ether ${ }^{4,5,11}$). Of the observations published, some cover only a limited temperature range and most appear to be of a lower precision than those obtained by comparative ebulliometry on samples of known high purity. The freezing points of the ketones have also been measured, and the results differ by $0.4-0.8^{\circ}$ from previously published values. ${ }^{4,12,13}$

Antoine equations, $\log _{10} P(\mathrm{~mm})=.A-B /(C+t)$, and Kirchhoff equations, $\log _{10} P$ (mm.) $=a-b / T-c \log T$, have been fitted to the experimental vapour pressures (t is the temperature in ${ }^{\circ} \mathrm{C}, T=t+273 \cdot 15^{\circ}$, and A, B, C, a, b, and c are constants). The Antoine equation usually gives a close fit for accurate experimental data, and permits easy calculation of the temperature corresponding to any particular value of pressure. The Kirchhoff equation for vapour pressure has a sounder theoretical basis but possesses the disadvantage that temperatures cannot readily be calculated from pressures. The results of the measurements tabulated in this Paper have a standard deviation ($P_{\text {obs. }}-P_{\text {calc. }}$) of $\pm 0.02 \mathrm{~mm}$. for the Antoine equations and $\pm 0.1 \mathrm{~mm}$. for the Kirchhoff equations.

Experimental

Purification.-Commercial samples of the four ketones were distilled under reduced pressure (700 mm .) through columns of 100 theoretical plates with a reflux ratio of $100: 1$. A series of fractions was collected, and those of highest purity (gas chromatography) were combined. The boiling range and gas chromatograms of methyl ethyl ketone and ethyl propyl ketone indicated the absence of impurities. Further purification of diethyl ketone and methyl propyl ketone was necessary; fractional freezing was effective for the former but not for the latter, which was purified by azeotropic distillation at 700 mm . with water. The ketones were dried over calcium sulphate (methyl ethyl and methyl propyl) or calcium hydride (diethyl and ethyl propyl), and redistilled.

Pure samples of methyl phenyl ether and ethyl phenyl ether were prepared from commercial products by fractional distillation at 650 mm . through 100 -plate columns. Fractions of constant boiling point which showed no impurities (gas chromatography) were combined, dried over calcium hydride, and redistilled under reduced pressure. Commercial diphenyl ether was distilled at atmospheric pressure from flask to receiver without the use of a column, and was further purified by fractional freezing. In the later stages of purification, all the compounds were kept under dry nitrogen.

Freezing Points, and the Quantitative Determination of Purity.-The purities of six of the compounds were determined by melting- or freezing-point procedures. ${ }^{14,15}$ Initial freezing points and the freezing-point depressions produced by addition of measured amounts of $2,3,3$-trimethylpentane were found by means of a U-tube apparatus. ${ }^{14}$ These methods could not be used for methyl propyl ketone because of its erratic freezing behaviour; its purity was assessed by low-temperature calorimetry. ${ }^{16}$ The results of the measurements are given in Table 1.

Vapour Pressure-Temperature Relationships, Normal Boiling Points, Values of ($\mathrm{d} P / \mathrm{d} t$) at 760 mm ., and Latent Heats of Vaporisation.-Vapour pressures from near 150 or 200 mm . to near 1000 mm . were measured in an ebulliometric apparatus. ${ }^{17}$ The apparatus and procedure were as described previously except that calculations were carried out on a digital computer, which calculated temperatures and corresponding vapour pressures from bridge readings of the platinum resistance thermometers, and also the following. Antoine equations and Kirchoff equations were fitted by the method of least squares to the observed values of t and P for each compound, and the values of pressure at the experimental temperatures were calculated from both equations for each compound. The experimental vapour pressures are given in Table 2, and

[^0]
Table 1

Purities and freezing points

Compound	urity (moles \%) and method of assessment	F. p. of sample	$\begin{aligned} & \text { F.p. for } \\ & 100 \% \text { purity } \end{aligned}$
Methyl ethyl ketone	99.95 ± 0.01 (f.p.)	$-86.73^{\circ} \pm 0.01^{\circ}$	$-86.69^{\circ} \pm 0.01^{\circ}$
Diethyl ketone	99.95 ± 0.01 (f. p.)	-39.00 ± 0.01	-38.97 ± 0.01
Methyl propyl ketone	99.93 ± 0.01 (calorimetric)	-76.88 ± 0.01	-76.86 ± 0.01
Ethyl propyl ketone	99.96 ± 0.01 (m.p.)	-55.67 ± 0.01	-55.65 ± 0.01
Methyl phenyl ether	99.993 ± 0.002 (m. p.)		
Ethyl phenyl ether	99.96 ± 0.01 (m.p.)		
Diphenyl ether	99.997 ± 0.001 (m. p.)		

Table 2

t	P	t	P	t	P	t	P
Methyl ethyl ketone							
42.788	199.28	64.005	$449 \cdot 69$	$74 \cdot 839$	$651 \cdot 42$	$83 \cdot 161$	850.78
$48 \cdot 148$	247.70	$67 \cdot 009$	499.73	$76 \cdot 950$	698.03	$85 \cdot 013$	$901 \cdot 02$
53.026	299.75	69.734	548.93	$79 \cdot 221$	$751 \cdot 08$	86.715	949-18
57.080	$349 \cdot 46$	$72 \cdot 343$	599.55	81-268	801.72	$88 \cdot 444$	$1000 \cdot 23$
60.821	401.05						
Diethyl ketone							
56.544	153.32	$82 \cdot 114$	401.08	96.897	$650 \cdot 69$	105.737	$850 \cdot 67$
63.032	198.99	$85 \cdot 494$	$449 \cdot 88$	$99 \cdot 177$	698.25	107.682	$900 \cdot 53$
68.735	$247 \cdot 83$	88.612	499.03	101.566	751.03	$109 \cdot 486$	$948 \cdot 79$
73.908	300.09	$91 \cdot 605$	$550 \cdot 15$	103.724	801.33	111.303	$999 \cdot 49$
$78 \cdot 158$	$349 \cdot 45$	94-314	599.94				
Methyl propyl ketone							
56.649	153.31	$82 \cdot 326$	401.03	97-179	650.75	106.114	852.16
$63 \cdot 184$	$199 \cdot 11$	85.708	$449 \cdot 64$	$99 \cdot 470$	$698 \cdot 36$	108.023	$900 \cdot 92$
$68 \cdot 897$	247.82	88.893	$499 \cdot 63$	101.845	$750 \cdot 53$	109.830	$949 \cdot 09$
74.077	299.96	91.834	$549 \cdot 67$	104.031	$801 \cdot 30$	111.655	999.78
78.340	$349 \cdot 29$	$94 \cdot 549$	599.34				
Ethyl propyl ketone							
$75 \cdot 613$	$153 \cdot 19$	102.558	$400 \cdot 90$	118.125	$650 \cdot 07$	127.509	851.28
82.486	$199 \cdot 14$	$106 \cdot 128$	$449 \cdot 80$	120.532	$697 \cdot 61$	129.522	$900 \cdot 24$
88.481	247.87	109.419	498.99	123.080	$750 \cdot 99$	131.435	948.81
$93 \cdot 872$	299.58	112.558	$549 \cdot 82$	$125 \cdot 345$	801.07	133.365	$999 \cdot 80$
98.385	$349 \cdot 27$	$115 \cdot 416$	599.62				
Methyl phenyl ether							
$109 \cdot 876$	$199 \cdot 12$	$135 \cdot 078$	$449 \cdot 66$	147.890	$650 \cdot 54$	157.810	$850 \cdot 44$
116.255	247.70	138.640	$499 \cdot 65$	$150 \cdot 429$	697.72	$160 \cdot 009$	$900 \cdot 72$
122.045	$299 \cdot 77$	141.919	549.54	$153 \cdot 143$	751.08	162.087	$950 \cdot 32$
126.854	$349 \cdot 43$	$145 \cdot 003$	599.99	155.554	$801 \cdot 21$	$164 \cdot 114$	$1000 \cdot 80$
$131 \cdot 266$	400.72						
Ethyl phenyl ether							
117.431	153.32	146.908	$400 \cdot 94$	163.972	650.77	$174 \cdot 190$	$851 \cdot 22$
124.908	198.96	150.795	449.59	$166 \cdot 622$	698.70	$176 \cdot 407$	$900 \cdot 51$
131.478	247-70	154.432	499.32	169.315	750.31	178.511	$949 \cdot 37$
$137 \cdot 430$	299.86	157.829	$549 \cdot 63$	171.821	$800 \cdot 98$	180.608	$1000 \cdot 09$
$142 \cdot 338$	$349 \cdot 27$	160.982	599.84				
Diphenyl ether							
$204 \cdot 213$	199.18	$235 \cdot 186$	449-40	$250 \cdot 991$	$650 \cdot 61$	263.290	851.84
212-102	$248 \cdot 07$	$239 \cdot 618$	499.95	$254 \cdot 089$	$697 \cdot 34$	265.939	$901 \cdot 01$
$219 \cdot 226$	300•19	$243 \cdot 667$	$550 \cdot 00$	257.458	$751 \cdot 14$	268.416	$949 \cdot 02$
$225 \cdot 105$	$349 \cdot 61$	247.413	599.79	260.469	$801 \cdot 86$	$270 \cdot 949$	$1000 \cdot 08$

the constants of the vapour-pressure equations in Table 3. The values of the normal boiling points, ($\mathrm{d} P / \mathrm{d} t$) at 760 mm ., and latent heats of vaporisation calculated from the Antoine equations are given in Table 4. Latent heats of vaporisation, ΔH_{v}, at the normal boiling point were calculated from the equation, $\Delta H_{\mathrm{v}}=T\left[(\boldsymbol{R} T / P)+B-V_{\mathrm{L}}\right] \mathrm{d} P / \mathrm{d} T$, where B is the second virial coefficient in the equation of state, $P V=\boldsymbol{R} T+B P$, and V_{L} is the molar volume of the liquid. Values of B were calculated from measured ${ }^{18}$ or estimated (T_{c} and P_{c} for ethyl phenyl

[^1]Table 3
Constants of vapour-pressure equations

Compound
Methyl ethyl ketone
hyl ethyl ketone $\quad 7.06376 \quad$ 1261.455 $\quad 221 \cdot 982$
Diethyl ketone 7.02427 1309.653 $214 \cdot 118$
Methyl propyl ketone ... $\quad \mathbf{7 \cdot 0 1 7 5 3} \quad 1311 \cdot 145 \quad \mathbf{2 1 4 . 6 9 3}$
$\begin{array}{llll}\text { Ethyl propyl ketone } & 7 \cdot 00083 & 1365 \cdot 798 & 208 \cdot 007\end{array}$
Methyl phenyl ether $7.05236 \quad 1489.756 \quad 203.543$
Ethy phenyl ether 7.01980 1507.267 194.357
Diphenyl ether 7.01188 1800.415 177.826

Antoine equation
$\log P=A-B /(C+t){ }_{B}$ A $\stackrel{A}{A}$

Kirchhoff equation
$\log P=a-b / T-c \log T$

a		
19.48332	2328.00	${ }^{c}$

29.02958
$2614.85 \quad 4.72805$
$21 \cdot 71880 \quad 2594 \cdot 12 \quad 4.63307$
$22 \cdot 90884 \quad 2812 \cdot 27 \quad 4.97916$
$22 \cdot 84299 \quad 3033 \cdot 20 \quad 4.88720$
$24.97404 \quad 3295 \cdot 20 \quad 5.53743$
$\begin{array}{lll}\mathbf{2 4 . 6 6 5 4 8} & \mathbf{3 8 9 7} \cdot 50 & 5 \cdot 30117\end{array}$

Table 4
Normal boiling points, $\mathrm{d} P / \mathrm{d} t$ at 760 mm ., second virial coefficients, molar volumes of liquids, and molar heats of vaporisation

Compound $\quad 760 \mathrm{~mm}$.
Methyl ethyl ketone ... 79.589 ${ }^{\circ}$
Diethyl ketone 101.959
Methyl propyl ketone ... 102.260
Ethyl propyl ketone ... $123 \cdot 496$
Methyl phenyl ether ... 153.580
Ethyl phenyl ether 169.806
Diphenyl ether............ 257.997

$(\mathrm{d} P / \mathrm{d} t)$ at 760 mm.	B	V_{L}	
$\left(\mathrm{mm} . \mathrm{Hg} /{ }^{\circ} \mathrm{C}\right)$	$B H_{\mathrm{V}}$ at 760 mm. 24.27	(ml.)	(cal. $/ \mathrm{mole}$)
22.94	-1085	100	7570
22.84	-1250	122	8060
21.75	-1260	122	8040
20.44	-1430	144	8520
19.89	-1300	129	9330
16.59	-1530	151	9730
	-1995	195	11,620

ether and P_{c} for diphenyl ether) ${ }^{19}$ values of the critical temperatures and critical pressures by the use of Pitzer and Curl's equation. ${ }^{20}$ The molar volumes, V_{L}, at the boiling points were obtained from volume equivalents of the elements. ${ }^{21}$

Chemical Physics Division, National Chemical Laboratory, Teddington, Middlesex.
[Received, January 8th, 1965.]
19 A. L. Lydersen, " Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions," University of Wisconsin, Engineering Experiment Station, report No. 3, 1955.
${ }^{20}$ K. S. Pitzer and R. F. Curl, J. Amer. Chem. Soc., 1957, 79, 2369.
${ }^{21}$ S. Glasstone, " Textbook of Physical Chemistry," Macmillan, London, 1940, p. 515.

[^0]: ${ }^{9}$ K. Owen, O. R. Quayle, and W. J. Gegg, J. Amer. Chem. Soc., 1942, 64, 1294.
 ${ }^{10} \mathrm{~F}$. Glaser and H. Rüland, Chem.-Ing.Tech., 1957, 29, 772.
 ${ }^{11}$ H. E. Bent and R. J. Francel, J. Amer. Chem. Soc., 1948, 70, 634.
 12 R. R. Dreisbach and R. A. Martin, Ind. Eng. Chem., 1949, 41, 2875.
 ${ }^{13}$ G. S. Parks, W. D. Kennedy, R. R. Gates, J. R. Mosley, G. E. Moore, and M. L. Renquist, J. Amer. Chem. Soc., 1956, 78, 56.

 14 E. F. G. Herington and R. Handley, J., 1950, 199.
 ${ }^{15}$ E. F. G. Herington, Analyt. Chim. Acta, 1957, 17, 15; R. Handley, ibid., p. 115.
 ${ }^{16}$ J. F. Counsell and J. F. Martin, unpublished results.
 17 D. P. Biddiscombe and J. F. Martin, Trans. Faraday Soc., 1958, 54, 1316.

[^1]: ${ }^{18}$ D. Ambrose, unpublished results.

